Tiling Slideshow

Jun-Cheng Chen, Wei-Ta Chu, Jin-Hau Kuo, Chung-Yi Weng, and Ja-Ling Wu

wtchu@cmlab.csie.ntu.edu.tw

Communications & Multimedia Laboratory National Taiwan University

Motivation

- Large amounts of consumer photos derive the following problems:
 - Filtering or correcting are annoying.
 - Browsing photos takes much time.
 - Sequential presentation makes users boring.

orientation correction

Goal

Generate a kind of new media that provides user elaborate photo browsing experience.

- Photo filtering & organization
- Vivid audiovisual presentation
- Value-added results

Photographic Story

- Paragraph: describe by text
 - Contains a topic sentence and several supportive sentences.
- Photographic paragraph: describe by photos
 - Contains a topic photo and several supportive photos

Topic photo

2006/10/24

The Proposed Slideshow

Outline

- System Overview
- Visual Processing
- Music Analysis
- Tiling Slideshow Composition
- Evaluation
- Conclusion and Future Work

System Overview

7

Photo Processing

- Orientation correction
 - EXIF (Exchangeable Image File Format) metadata
- Photo Filtering
 - Blur detection
 - Check edge information in diff. resolutions
 - Overexposure/Underexposure detection
 - Check intensity information of each photo

Blurred photo

Underexposure photo

Photo Clustering

Displaying photos that are in the same scenic spot or the same event would strengthen audiovisual perception.

- Clustering
 - Time characteristics event
 - Content characteristics visually homogenous

 (\mathbf{O})

Time-based Clustering

Check the time gap between adjacent photos

Content-based Clustering (1/3)

Given a time-based photo cluster, finer clustering is performed based on content-based features. (dominant color and color layout)

Within-cluster distance:

$$S_{w} = \max_{g=1,...,m} \frac{1}{n_{g}(n_{g}-1)} \sum_{i=1}^{n_{g}} \sum_{j=1}^{n_{g}} d(P_{i}, P_{j})$$

d(.) is the average of normalized dominant color and color layout distances.

Between-cluster distance:

Goodness of a clustering case:

$$S_{b} = \min_{\substack{g \neq h \\ g=1,...,m \\ h=1,...,m}} \frac{1}{n_{g}n_{h}} \sum_{i=1}^{n_{g}} \sum_{j=1}^{n_{h}} d(P_{i}, P_{j})$$

 $R_i = \frac{S_b}{S_w}$

Prefer that photos in the same cluster are similar, and photos in different clusters are distinct as much as possible.

Content-based Clustering (2/3)

Content-based Clustering (3/3)

Music Analysis

- Beat detection
- Music segmentation

For frame switching and photo displaying

Short Summary

Photo

- Filter out defective photos
- Organize photos in terms of time and content characteristics

Music

Segment into smaller pieces

Tiling Slideshow Composition

Challenge 1

Given a time-limited music clip, only a subset of photo clusters can be displayed.

Challenge 2

For a cluster of photos to be displayed, more important photos should occupy larger space.

Challenge 3

Photos should be smartly manipulated to fit in with the limited displaying space.

Cluster Selection (for Challenge 1)

Cluster-based importance

- Defined based on "photo per minute (PPM)" and "photo conformance (PC)"
- Higher shooting frequency (PPM), more important
- Larger conformance (PC), more important

For each content-based cluster C_g in a time-based cluster

 $PPM(C_g) = N(\Psi) / Time _ Duration(\Psi) - Shooting frequency$

$$PC(C_g) = 1 - \frac{1}{n_g(n_g - 1)} \sum_{i=1}^{n_g} \sum_{j=1}^{n_g} d(P_i, P_j)$$

 Opposite to within-cluster distance

Templates (for Challenge 2)

Design various templates that contain a topic cell and several supportive cells - to form photographic paragraphs.

A cluster with 4 photos

Template Determination (for Challenge 2)

Templates importance

 $Ic_{i} = Area(Tc_{i}) / Area(T) \qquad (Ic_{1} \ge Ic_{2} \ge ... \ge Ic_{k})$

 $TV = (Ic_1, Ic_2, ..., Ic_k)$ — Template importance vector

Photo-based importance

Defined based on "face region (FR)" and "attention value (AV)"

$$PI_i = W_{face} \times FR(P_i) + W_{attention} \times AV(P_i)$$

 $PV = (PI_1, PI_2, ..., PI_k) - Photo importance vector$ $(PI_1 \ge PI_2 \ge ... \ge PI_k)$

Template Determination (for Challenge 2)

- Find the most matching between template importance and photo importance
 - Find the minimum included angle between them

Composition (for Challenge 3)

Find the region that conveys most "content value" and conforms to the aspect ratio of the targeted cell – constrainted optimization problem.

Top-down case: (photo with face)

Bottom-up case: (photo without face)

Composition (for Challenge 3)

- Find ROI
 Extend
- 3. Crop
- 4. Resize

Evaluation

Photos taken by amateurs in three different trips.

Data Set 1:	Data Set 2:	Data Set 3:
780 photos	522 photos	1257 photos
Music: 3m31s	Music: 4m38s	Music: 4m06s
Osaka, Kyoto, Kobe, Nagoya, Tokyo (Japan)	Melbourne, Brisbane (Australia) Amsterdam (Netherlands)	Osaka, Kyoto, Kobe (Japan)

User Study

- Compare the satisfaction of ACDSee, PhotoStory, and Tiling slideshow
- Questionnaire (to 27 evaluators)
 - Q1: How do you feel the photo variety in a time unit?
 - Q2: Do you think it's a funny presentation?
 - Q3: Do you think the sequence helps you experience this trip?
 - Q4: Are you willing to use it to generate your own slideshow?
 - Q5: How do you feel the audiovisual effects of this slideshow?

Objective Tests (1/2)

Clustering performance evaluation

	#frames	# photos	# frame with clustering error	Avg. number of photos in a frame
Slideshow 1	37	127	1	3.43
Slideshow 2	48	172	1	3.58
Slideshow 3	43	184	2	4.28

Ill-clustered photo

Ill-clustered photo

Objective Tests (2/2)

Cropping performance evaluation

	# photos	# ill-cropped photos	# ill-cropped photos in topic cell
Slideshow 1	127	5	1
Slideshow 2	172	5	0
Slideshow 3	184	6	3

Summary

- We propose a new type of audiovisual presentation for consumer photos.
- Perform both visual and music analysis for organized presentation.
- We deal with issues on content selection and smart manipulation to display qualified content in limited time and limited space.

Future Work

- Semantic features or user intervention can be added to facilitate more elaborate filtering, clustering, cropping, and interactive browsing.
- Possible applications
 - Apply to different types of photos, e.g. wedding and party.
 - Include videos in cells.
 - Extend it to be an on-line version and provide an on-line tour.
 - Extract keyframes from videos. Slideshow of keyframes could be a kind of video summary.